

CREATE

Critical raw materials elimination by a top-down approach to hydrogen and electricity generation

Key Facts

Funding Agency HORIZON 2020

Project Call NMBP-03-2016

Duration 01/2017 - 06/2020

Coordinator

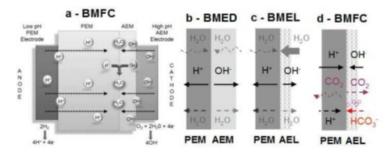
Institut Charles Gerhardt Montpellier, Equipe AIME, CNRS - Université de Montpellier

Partners

- Institute of Chemical Research of Catalonia (ICIQ)
- Aalto University Finland
- FUMATECH BWT GmbH
- The Technion-Israel Institute of Technology
- ITM Power
- University of Rome Tor Vergata
- Forschungszentrum Jülich GmbH
- PRETEXO
- Northeastern University, USA

Website

http://www.create-energyh2020.eu/


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 721065.

Project Objectives

CREATE aims at developing innovative membrane electrode assemblies (MEAs) for low-temperature fuel cells / electrolysis cells at much reduced cost. This will be achieved via elimination or drastic reduction of critical raw materials in their catalysts, enabling cost-efficient solutions to reversibly store electricity in the form of H2. To overcome the limitations of actual technologies, a dual strategy is considered:

1. Shifting from PEM-based cells to pure anion-conducting polymer electrolytes: highly active PGM-free or ultralow-PGM catalysts at high pH

2. Shifting from PEM-based cells to bipolar-membrane polymer electrolytes: bipolar membranes with low-pH electrode (fuel side) and high-pH electrode (oxygen side)

a) Bipolar-Membrane Fuel Cell (BMFC) with low-pH anode & high-pH cathode;

b) Bipolar-Membrane design currently applied,

c) Expected advantage of a porous anion-exchange layer (AEL) for the design of BM with improved water transport to the junction, or

d) Improved CO2 removal from the junction in BMFC.

EIFER's Contribution

- Project Management
- Definition of test protocols, cost analysis and Life Cycle Analysis of CREATE cells
- Cell assembly and cell testing
- Evaluation of different membrane assemblies under fuel cell, electrolysis and reversible profiles
- · Dissemination and exploitation

Contact

Dr. Julian Dailly +49 (0) 721 6105 1352 julian.dailly@eifer.org EIFER - Europäisches Institut für Energieforschung EDF-KIT EWIV Emmy-Noether-Straße 11 76131 Karlsruhe, Germany www.eifer.org