ENERMAT PLATFORM

Materials Synthesis & Processes for Energy

European Institute for Energy Research by EDF and KIT

eirer

Development of Fuel Cell Materials and Processes

The ENERMAT laboratory has been created in 2014 in the framework of a collaboration between the Karlsruhe Institute of Technology (KIT) and EIFER. It is located at the Institute for Chemical Technology and Polymer Chemistry (ITCP) at KIT Campus South.

Activities at ENERMAT:

- Promotion of EIFER's expertise in materials science and processes for energy, using conventional and less costly techniques such as screen-printing, and tape casting.
- Development of EDF patents linked to materials and processes before their exploitation phase.
- Evaluation of advanced materials for energy in strategic applications such as electricity production in fuel cell, electrochemical hydrogen production in electrolyzer, gas separation membrane and E-Fuels production.

Samples produced in ENERMAT

From Powder to Power

Manufacturing of innovative powder-metallurgical processed materials, covering the whole production process, from the raw material to the finished product in 3 steps.

Powder Synthesis

- Solid-state reaction
- Pechini Process
- Sol-Gel Process

Powder Processing

- Pressing
- Screen-printing (5 to 40 µm)
- Tape-casting (20 to 2000 µm)
- Nano-Infiltration
- Sintering under air (1600°C)
- Sintering under atmosphere (1000°C)

Electrochemical Measurements

- Electrochemical Impedance Spectroscopy (EIS)
- Application profiles: power, temperature and reversibility
- Cell area from 3 to 50 cm², pO₂ pH₂ PH₂O
- Microscopic Analysis

Latest Public Funded Projects

OxiGEN (EU 2018 - 2020)

OxiGEN M Next-generation Solid Oxide Fuel Cell stack and hot box solution for small stationary applications. http://www.oxigen-fch-project

MethQUEST (BMWi 2018 - 2021)

METH@UEST Production and use of methane from renewable sources in mobile and stationary applications. http://www.methquest.de

ARCADE (BMBF 2019 - 2023)

Advanced and Robust metal supported Cell with proton conducting ceramic for electrolysis Applications in Defossilized Energy systems.

Uni.Twente/Shell/EIFER (NWO 2022 - 2023) CO₂ methanation using high temperature PCC electrolysers.

KIT/CSM (NSF-DFG 2022 - 2024)

Electrochemically enhanced low-temperature catalytic NH₃ synthesis.

References

J. Dailly, M. Ancelin, M. Marrony (2017). Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity. Solid State Ionics, 306, 69-75.

J. Dailly, G. Taillades, M. Ancelin, P. Pers, M. Marrony(2017). High performing BaCe_{0.8}Zr_{0.1}Y_{0.1}O_{3.6}Sm_{0.5}Sr_{0.5}CoO_{3.6} based protonic ceramic fuel cell. Journal of Power Sources, 361, 221-226.

G. Taillades, I. Hachemi, P. Pers, J. Dailly, M. Marrony (2021). Synthesis and Characterizations of Barium Zirconate-Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells. Journal of Composites Science, 5-183.

L. Wehrle, D. Schmider, J. Dailly, A. Banerjee, O. Deutschmann, (2022). Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-CH₄ systems via hierarchical multi-scale modelling. Applied Energy, 317, 119143.

Contact

Dr. Julian Dailly +49 (0) 721 6105-1352 Julian.Dailly@eifer.org

ENERMAT – Institute for Chemical Technology and Polymer Chemistry KIT-ITCP Building 11.21, Room 204-205 76131 Karlsruhe, Germany

EIFER - Europäisches Institut für Energieforschung EDF-KIT EWIV Emmy-Noether-Straße 11 76131 Karlsruhe, Germany www.eifer.org

Engesserstrasse 20